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I Introduction 

 
The Model Development for Graphene Spintronics program began on 26 May 2011 and 
ended 25 May 2015.  It was executed by the Department of Electrical and Computer 
Engineering, College of Science and Engineering, University of Minnesota, with Prof. 
P.Paul Ruden and Prof. Darryl L. Smith serving as PI and co-PI. 
 
The regular period of performance for this program ended on 25 May 2014.  However, as 
the departure of a key student in 2013 caused significant delays in executing the planned 
research, no-cost extensions of the program were requested and granted by the cognizant 
office, and the program ran through 25 May 2015. 
 
Graphene is a promising material for electronic and spintronic applications due to its high 
carrier mobility and low intrinsic spin-orbit interaction.  However, extrinsic effects may 
easily dominate the carrier dynamics.  The principal effort of the program focused on 
theoretical work that can raise significantly the level of understanding of spin transport 
phenomena in graphene device structures.  Of particular interest were structures that are 
under active exploration for the fabrication of spin valves. 
 
II Preliminary investigation 

 

The initial effort focused on a careful examination of likely candidate mechanisms for 
spin relaxation of electrons or holes in graphene on insulator (specifically silicon dioxide) 
structures.  This involved discussions with several researchers at Los Alamos National 
Laboratory and elsewhere.  As a result of these interactions it was decided to explore two 
mechanisms in detail. 
 
The first mechanism under investigation was spin relaxation associated with the electric 
field of a charged impurity in the SiO2 beneath the graphene layer. 
 
A charged impurity in the SiO2 gives rise to an electric field in its vicinity with a non-
vanishing component perpendicular to the graphene layer.  The graphene may contain 
non-equilibrium charge carriers (electrons or holes) induced by an applied voltage 
between the graphene and the gate beneath the SiO2 layer.  Evidently, the charge carriers 
in the graphene screen the Coulomb field associated with the impurity, however, a non-
zero electric field in the graphene layer remains.  This field has a component 
perpendicular to the plane of the graphene in the region close to the impurity.  A 
perpendicular field breaks the reflection symmetry of the unperturbed graphene (point 
group D6h) and gives rise to a Rashba spin-orbit coupling mechanism.  (The 
perpendicular field near the impurity is an addition to the uniform field due to the gate, 
which also contributes to the Rashba-type spin-orbit coupling). 
 
The physical mechanism under exploration was scattering due to the spatially modulated 
spin-orbit interaction.  This type of scattering is rather unique, inasmuch as it requires a 
spatially varying field due to a charged center (impurity) not located within the plane of 
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the graphene.  It also is quite different from the usual case of Dyakonov-Perel spin 
relaxation due to scattering.  
 

The second spin relaxation mechanism under exploration is similar in origin to the first 
and also is primarily relevant for device structures.  Here too, a spatially varying electric 
field perpendicular to the graphene layer induces a local Rashba-type spin-orbit 
interaction.  In contrast to the example above, this effect occurs along the edge of a 
graphene layer, where fringe fields exist.  A spin-flip scattering process of interest can 
occur if a charge carrier is specularly reflected at the edge of the graphene layer. 
 
III Scattering calculations 

 

The scattering mechanisms investigated during this phase of the program are associated 
with non-magnetic, charged impurities in the substrate (e.g. SiO2) beneath the graphene 
layer.  Such impurities cause an electric field that extends through the graphene and has a 
non-vanishing perpendicular component.  Consequently, the impurity, in addition to the 
conventional elastic, spin-conserving scattering can give rise to spin-flip processes.  The 
latter is a consequence of a spatially varying Rashba spin-orbit interaction caused by the 
electric field of the impurity in the substrate.   
 
We consider a planar n-type graphene layer on a SiO2 insulator that contains charged 
impurities at a distance z0 from the graphene.  Such impurities give rise to a Coulomb 
potential that is screened by the mobile charge carriers in the graphene.  Since the charge 
centers are not located in the graphene plane, they also cause a spatially varying electric 
field perpendicular to the latter, and hence a spatially varying Rashba spin-orbit 
interaction.  To be specific, we assume a positive impurity charge and a non-zero mobile 
equilibrium electron density in the graphene far from the impurity. 
 
We calculate the screened potential in a non-linear Thomas Fermi approximation taking 
the limit of zero temperature.  The screening is nonlinear because the density of states at 
the Fermi energy varies considerably in the vicinity of the impurity.  Representative 
results are shown in fig. 1 for three different electron densities corresponding to Fermi 
energies ~  and . 
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Figure 1: U() as a function of  for several different bulk electron densities.  Distances 
of z0 = 5nm (dashed lines) and 2.5nm (solid lines) are assumed. 
 
We assume that the graphene layer is doped and electric fields far from the impurity are 
negligible.  Hence, the electronic states are spin eigenstates.  The impact of the impurity 
on transport is calculated in lowest order Born approximation.  At this level of 
approximation, the two mechanisms referred to above act independently, although they 
are associated with the same impurity.  The (lineal) differential scattering cross-section 
for potential scattering is calculated as, 
 

    

Here q = 2ksin(/2), and  is the scattering angle. 
 
We also calculate the differential cross-section for spin scattering due to the Rashba term 
(R() = RE(), with R a constant related to the graphene electronic structure, and E() 
is the perpendicular field component) as, 

 
     

III.1 Potential scattering 

 
Results for the potential scattering cross-section as a function of the scattering angle are 
displayed in fig. 2 for three different electron energies, and , 
1  and . Evidently, back scattering is suppressed. 
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Figure 2: Differential scattering cross-section for potential scattering as a function of θ 
for several different electron energies, z0 = 5nm (dashed lines) and 2.5nm (solid lines). 
 
III.2 Spin scattering 

 
Results for the differential cross-section associated with the Rashba interaction due to the 
impurity field are plotted as a function of the scattering angle in fig. 3, again for three 
different electron energies corresponding to the Fermi energies for , 
1  and . 

 
Figure 3: Differential scattering cross-section for spin scattering as a function of θ for 
several different electron energies, z0 = 5nm (dashed lines) and 2.5nm (solid lines). 
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Lastly, we integrate over the scattering angle to obtain the total spin-flip scattering cross-
section.  The results as a function of electron energy for the same parameters as above are 
shown in fig 4.  As interest focuses primarily on electrons near the Fermi energy, the 
energy scale is normalized. 

 
Figure 4:  Total spin-scattering cross-section as a function of electron energy, z0 = 5nm 
(dashed lines) and 2.5nm (solid lines). 
 

 

III.3 Momentum and spin relaxation 

 
Both scattering mechanism addressed here can contribute to momentum relaxation.  We 
calculate total momentum scattering cross sections by multiplying the differential cross 
sections above by (1 – cos()) and integrating over .  Momentum relaxation times may 
then be estimated for assumed densities of impurities (and distances z0).  Taking the 
impurity density to be  and z0 = 2.5nm, we obtain for electrons at the Fermi 
energy (Ef = 50meV) m,p ≈ 2ps and m,R ≈ 3ms.  Clearly, the momentum relaxation 
induced by the Rashba interaction (although back-scattering is not suppressed) is quite 
small in comparison to the potential effect. 
 
Spin relaxation, however, is solely associated with the Rashba term.  By calculating the 
total integrated scattering cross-section as in fig. 5, one may estimate the spin relaxation 
time (for the same parameters as in the preceding discussion) to be s ≈ 2.4ms.  The early 
results obtained from these calculations were reported as: “Electron spin flip scattering in 
graphene due to substrate impurities”, A. Goswami, Y. Liu, F. Liu, P.P. Ruden and D.L. 
Smith (2013), MRS Proceedings, 1505, mrsf12-1505-w10-12. 
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Further work on ionized impurity scattering conducted as part of this program aimed at a 
quantitative evaluation of the mechanism including the spin-orbit coupling Rashba effect 
throughout the graphene layer.   This work led to many additional insights and was 
reported in detail as: “Scattering in graphene associated with charged out-of-plane 
impurities”, Y. Liu, A. Goswami, F. Liu, D.L. Smith, and P.P. Ruden, J. Appl. Phys. 116, 
234301 (2014). 
 
III.4 Edge scattering 

 
In graphene, the small atomic number of carbon leads to a relatively weak intrinsic spin-
orbit interaction.  Hence, the extrinsic spin-orbit interaction controlled by an external 
electric field tends to be dominant.  At low temperatures carrier transport in graphene is 
ballistic with a mean free paths on the micron scale.  These features make it possible to 
control the spin states by employing a field-effect-transistor-like structure.  In this type of 
device, the edges of a graphene sheet are of interest because edge-scattering events may 
lead to a different spin behavior compared to the internal part.  The problem is further 
complicated by the non-uniformity of the electrostatic field and potential near the edge.  
In order to understand this scenario, we explored electron spin dynamics near the edge of 
a graphene layer.   

 
The Rashba spin-orbit interaction strength,  , is proportional to the electric field 
component normal to the graphene plane.  The external electric field perpendicular to the 
graphene plane breaks the symmetry of the system and the spin states are no longer 
degenerate.  The total graphene Hamiltonian including spin-orbit coupling can be written 
as: 
 

 zF sviH 
 


 

2
                           

 
where s  is the true spin of an electron, and the z  direction is normal to the graphene 
plane.  The Hamiltonian is a 44  matrix, which couples the pseudospin, 


, and the true 

spin, s . 
 
In order to incorporate the non-uniform electric field and potential in the spin calculation, 
we apply a multi-step approximation.  As the potential and field only depend on the 
direction perpendicular to the edge, y , the system is divided into a series of optimized 
steps along y .  Within each step, the electric field and potential are approximated by an 
optimized constant.  Therefore, the Hamiltonian for each step can be solved separately 
and, by matching the wavefunctions at all the step boundaries, the final outgoing spin 
state can be calculated.  As the number of steps in the calculation increases, the results 
gradually approach the exact value. 
 
Representative results are shown in fig. 5.  The distance between the initial location of 
the electron and the graphene edge is taken to be mL 2  (within the mean free path at 
low temperature).  The probabilities of the spin up state at Ly   are calculated as a 
function of the incident angle.  The solid line neglects the edge effect, the dashed line 
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includes the position-dependent electric field but not the potential, and the dash-dotted 
line includes both the edge-induced field and potential.  The results show that the o90  
case is unaffected by the edge effect, due to the time-reversed symmetry.  For o90 , by 
including the non-uniform electric field, the same spin state moves slightly to smaller 
angles.  The decrease of the electric field near the edge leads to a decrease of the average 
Rashba interaction, and the difference between the two chiral wave vectors,   kk , also 
decreases, which is proportional to   for E .  In order to maintain the same phase 
shift   pLkk   , the propagation distance sin/2LLp   has to increase, therefore a 
smaller incident angle   is preferred.  Including the effect of the electrostatic potential, 
the energy E  is equal to the Fermi energy plus the potential.  The increase of E  also 

leads to a decrease of   kk , as the derivative 3

3

4
1

Ev
kk

E F










 is negative 

( E ).  Therefore the same spin behavior also shifts to a smaller angle  .  The 
induced electrostatic potential has a more significant effect on the spin states, because it 
changes the total energy E .  In order to maintain the y  component of   kk  for the 
same spin probability, xk  has to increase with E , therefore the angle is shifted 
significantly.  On the other hand, the induced electric field shifts the Rashba interaction, 
which is smaller than E  by orders of magnitude.  The effect of the induced potential is 
greater for smaller incident angles because for small angles the electrons spend more time 
propagating near the edge. 
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Figure 5. Probability of spin up for the outgoing state in the example device.  The 
probability is calculated at the same distance L  from the edge as the initial state.  The 
solid line does not include the edge electrostatic effect.  The dashed line includes the 
edge-induced electric field, but not the induced potential.  The dash-dotted line includes 
both the edge-induced field and potential. 
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The key calculations of this work were described in detail as: “Rashba-induced spin 
scattering at graphene edges”, F. Liu,.Y. Liu, J. Hu, D.L. Smith, and P.P. Ruden, J. Appl. 
Phys. 114, 093708 (2013). 
 
 
IV Graphene spintronic device model   

 
In the final phase of the program we developed a device model for graphene-based spin 
valves that properly describes the electronic and spintronic properties, including 
electrostatics, charge and spin injection, transport, spin relaxation, spin-current profiles, 
bias-dependent magnetoresistance, etc.  
  
A schematic cross-section of a typical graphene spin valve is shown in fig. 6.  A 
“nonlocal” four terminal structure has been widely employed for enhanced spin injection. 
 

 
 
Figure 6.  Schematic cross-section of a typical nonlocal graphene-based spin valve. 

 
The four contacts 1, 2, 3, and 4 are all made of FM metals.  Below the contacts is a tunnel 
barrier layer (on the order of 1 nm) composed of an insulating material such as Al2O3, to 
enable efficient spin injection.  The graphene layer is beneath the tunnel barrier, followed 
by SiO2 (on the order of 102 nm) and Si at the bottom providing gate control.  A “current 
source” is applied between contacts 3 and 4, injecting and extracting both charge and spin 
carriers into the graphene layer.  The charge current flows in one direction (3 to 4) while 
the spin current may flow in both directions (3 to 4, and 3 to 2).  Spin detection is 
realized by measuring the resistance difference (called the magnetoresistance, MR) 
between terminals 1 and 2 in parallel (P) and antiparallel (AP) configurations. 
 
In the following, we first discuss the simple “local” structure, which involves only two 
contacts, 1 and 2, and the region between them (0 ≤ x ≤ L3 in fig. 6).  The “local” 
structure is similar to a graphene field-effect transistor, except for the existence of a 
tunnel barrier between the graphene channel and the charge injection/collection contacts. 
It is convenient to use conventional transistor terminology by defining contact 2 as the 
“source” (S) and contact 1 as the “drain” (D).  For simplicity we assume that the same 
definition holds for both electron and hole conduction regimes.  The Si contact at the 
bottom constitutes the “gate” (G).  After a discussion of the “local” device, we introduce 
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the “nonlocal” device, and discuss the bias-dependent MR for both devices in the 
following sections. 
 
Because of the low density of states in graphene, a quantum capacitance effect needs to 
be considered.  It is important to clarify three concepts in graphene: the electrostatic 
(Galvani) potential, ES, the electrochemical potential, EC, and the (quasi-) Fermi energy 
EF.  The electrostatic potential in graphene is defined as the energy per electron at the 
Dirac point.  The electrochemical potential in graphene is defined as the energy per 
electron at the Fermi level.  Under bias, it may be above or below the Dirac point, and it 
may be spin-dependent.  Here we define the (quasi-) Fermi level as the difference 
between EC and ES, i.e., EF = EC – ES. For S, D, and G contacts, we assumed infinite 
densities of states and EC = ES. The voltage (EC per unit charge) difference between D 
and S is VDS. The voltage difference between G and S (D) is VGS (VGD). When VGS is 
positive (negative), the Fermi level in graphene beneath the contact S is biased above 
(below) the Dirac point and locally the channel is in the electron (hole) conduction 
regime. 
 
Because of the low density of states, the graphene layer may not completely screen the 
electric field induced by the charge at the gate.  We introduce a screening efficiency α. 
For example, in the electron conduction regime, α is defined as: 
 
                                    

 gphGS VVC
en


 .     

 
Here, e is the electron charge, n is the electron density in graphene, CS is the capacitance 
of the SiO2 dielectric per unit area, VG is the electrochemical or electrostatic potential at 
the gate, and Vgph is the electrostatic potential in graphene. 
 
Under the contacts, when there is no current injection, the EC in graphene is the same as 
that in the FM contact (i.e. EF = eVgph).  Taking the S contact as an example, the 
electrostatics in the vertical direction of fig. 6 satisfies the following equation: 
 

                              
SS

T
FGS C

en
C
CEeV 










 1 .     

 
CT is the capacitance of the tunnel barrier per unit area.  When EF is much greater than 
the thermal energy, the electron density n can be expressed in terms of EF: 
 
                                   
















62

22 kTEan F  .     

 
k is the Boltzmann constant. T is the temperature. a = 2π-1(ħvF)-2, where vF ≈ 106 m/s is 
the Fermi velocity in graphene and ħ is the reduced Planck constant. 
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Combining the equations above, the screening efficiency α can be written as: 
 

               
1

2

2

3
11


















FS

T

F E
kT

C
C

AE


 , 
SC

aeA
2

2

 .     

 
And the Fermi level EF is determined through: 
                                    

      
 









































































2
1

1

3
4
111

2
1

2

2

S

T

GS

S

T
F

C
C

kTAAeV

C
C

A
E


.    

 
In a graphene spin valve, the thickness of the tunnel barrier is about 1 nm, while the 
lateral dimension of the device (in x direction) is on the order of microns.  Therefore in 
our model, it is a good approximation to assume α to be constant within each region S (0 
< x < L1), D (L2 < x < L3), and the channel (L1 < x < L2).  The screening efficiency α is 
about 0.1 for S and D regions.  The channel region without a contact on top corresponds 
to CT → 0, resulting in α ≈ 1. At x = L1 and x = L2, the transition of α from ~ 0.1 to ~ 1 
takes place within the length scale of a few nanometers.  Compared to the lateral 
dimension of the device, it is reasonable to assume an abrupt transition in the model. 
 
The conductivity of graphene at a high carrier density can be written as: 
 
                                    FF

F EEDve


2

22

 .     

 
Here D(EF) is the density of states (DOS) in graphene and τ(EF) is the momentum 
relaxation time, both at the Fermi level. Assuming the device to be operating at low 
temperature, impurity scattering is the dominant mechanism. The conductivity is then 
approximately proportional to EF

2, which is consistent with experimental observations. 
 
When S and D are FM contacts, spin-polarized carriers are injected into the graphene 
channel.  The parameters EF, n, and the current J all have two components, labelled by 
the two spin states “up”, ↑, and “down”, ↓.  For example, n↑ (n↓) stands for the electron 
density with spin up (down) and the total electron density n = n↑ + n↓.  The direction of 
the spin is normal to the cross-section in fig. 6.  We assume low injection and electron 
conduction regime so that the electron densities are not far from their equilibrium values. 
The electron-hole recombination can be neglected in this unipolar case.  In the framework 
of the gradual channel approximation, the spin-dependent current and carrier densities 
can be expressed as: 
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                         gphFF eVE
dx
dEJ 

 ,
2

,,  ,     

 

                             

















 622
1 22

,
,

kTE
an F  .     

 
κ is a proportionality factor determined by the physical parameters chosen.  The total 
charge current and spin current are defined as: 
 
                                  


 JJJ , 


 JJJ S .  

 
Combining these equations, the current can be expressed as functions of EF↑ and EF↓.  
 
A spin relaxation process, which tends to reduce the net spin of the system, can occur in 
graphene. Physical mechanisms involve the spin-orbit interaction in combination with 
spatial fluctuations due to impurities, boundaries, or phonons. For the device modeling in 
this work, we characterize spin relaxation by a single parameter, the spin relaxation time 
constant, τS.  
 
We take the spin relaxation time to be 0.5 ns, in agreement with relevant experimental 
results.  When the magnetization of the two contacts S and D is in the same direction, we 
define it as the “parallel” (P) case, and set the spin-dependent tunneling parameter gS↑ = 
gD↑ = 3gS↓ = 3gD↓; when S and D have opposite magnetization, we define it as the “anti-
parallel” (AP) case, and set gS↑ = gD↓ = 3gS↓ = 3gD↑.  Typically spin valves operate at low 
temperature, hence we set T = 1 K. 
 
IV.1 Local structure 

  
The calculated electrochemical potential, electrostatic potential, charge and spin current 
density profiles for parallel and anti-parallel cases are shown in fig. 7.  The device is in 
the electron conduction regime.  The discontinuity of the electrostatic potential at the S 
and D boundaries are due to different screening efficiencies with and without a metal 
contact on top.  The total current J in graphene is constant in the channel, and decreases 
to zero at x = 0 and x = L3.  The slight decrease of JS in the center of the channel is due to 
spin relaxation.  When the contacts are polarized in parallel, the spin-dependent 
electrochemical potentials cross, while the spin-dependent currents do not cross; when 
the contacts are in anti-parallel configuration, these results are opposite. 
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Figure 7.  Electrostatic and current density profiles for a local structure.  VDS = 20 mV. 
VGS = 20 V.  EC↑ and EC↓ denote electrochemical potentials for spin up and spin down 
electrons.  ES denotes the electrostatic potential.  The current notations are defined in the 
text.  P/AP: FM contacts with parallel/anti-parallel magnetization.  The arrows denote the 
majority spin direction in the FM contacts.  The energy is shown on a logarithmic scale. 

 
 

In a “local” structure, spin and charge are injected into the device simultaneously.  Hence 
the MR is small. 
 
IV.2 Nonlocal structure 

 
The introduction of a nonlocal structure is to separate the charge and spin flux, and 
thereby to enhance the magnetoresistive effect.  As shown in fig. 6, a current source is 
applied between contacts 3 and 4, injecting both charge and spin into graphene.  The 
charge current can only flow to the left while the spin current flows in both directions.  
The electrostatic potential on contacts 2 and 3 are set to be equal so that no charge flow 
occurs between them. 
  
To understand how the nonlocal structure changes the device characteristics, in fig. 8, the 
spin-dependent EC profiles are plotted for both P and AP cases.  Figs. 8 (a) and (b) show 
a low-bias case (VDS = 2 mV), and Figs. 8 (c) and (d) show a high-bias case (VDS = 10 
mV).  VGS = 20 V is used for both cases.  The black bars with “×” at the ends show the 
position of electrochemical potential at the S and D contacts.  It is observed that most of 
the applied bias VDS drops across the tunneling contacts.  For the nonlocal device, due to 
spin relaxation, EC↑ - EC↓ decreases with spin flux from left to right.  At low bias, the 
spintronic property of the device is determined by the extrinsic spin source, and the ECs 
do not cross for either P or AP cases; while at large bias, the spintronic property is 
dominated by intrinsic spin injection, and the ECs cross for the P case. 
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Figure 8.  Spin-dependent electrochemical potential profiles for both P and AP 
configurations in nonlocal devices at low (VDS = 2 mV) and high bias (VDS = 10 mV). VGS 
= 20 V. The black bars with “×” at the ends denote the position of electrochemical 
potential at the contacts. The large and small arrows indicate nonlocal spin injection and 
majority spin direction in the FM contacts, respectively. 

 
  
The spin flux in a spin valve is detected by applying a small bias between contacts 1 and 
2. In practice, one can either fix the current between 1 and 2, and measure different VDS 
for P and AP configurations; or fix VDS and measure different current for the two cases. 
Here, we choose the latter option, and the MR can be defined as: 
 
                                      1

AP

P

J
JMR     

 
JP and JAP are the total current densities for P and AP configurations. 

  
The MR and current as a function of VGS for both local and nonlocal structures are plotted 
in fig. 9, with VDS = 1 mV.  For the specific set of parameters used in the calculations, 
MR is improved by about four times when employing a nonlocal structure.  The behavior 
of MR as a function of VGS is consistent with experimental results in the literature.  For 
both local and nonlocal devices, MR increases with VGS at small bias.  For nonlocal 
devices, MR decreases with VGS at large bias. When the magnitude of VGS is small, the 
graphene channel is insulating; the charge and local spin transport in the channel are not 
very efficient.  As |VGS| increases, the channel becomes more conducting.  The voltage 
drop across the contact barriers increases with |VGS| and therefore the spin injection is 
more efficient.  When |VGS| continues to increase after most of the voltage has dropped 
across the contact barriers, the local spin injection saturates and the decrease of the 
nonlocal spin injection becomes dominant. 
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Figure 9.  Current and magnetoresistance as a function of VGS for both local and nonlocal 
structures. VDS = 1 mV. 
 
Details of the calculations as well as a more extensive presentation of the results obtained 
have recently been published: “Device model for graphene spin valves”, F. Liu, Y. Liu, 
D.L. Smith, and P.P. Ruden, IEEE Trans. El. Devices 62, 3426 (2015). 
 
 
V Summary 

 
The scattering and device models developed under this program have shed much light on 
the physics that enable and limit the operation of local and non-local graphene spin 
valves.  Specifically, the following problems were examined: 

1) Charge carrier scattering associated with charged impurities located in the 
substrate that supports the graphene active layer.  The mechanisms examined 
were the Coulomb interaction and the spatially varying Rashba spin-orbit 
interaction. 

2) Scattering due to local electric fields at the edge of a graphene layer.  Here too a 
novel mechanism arises due to the spatially varying Rashba interaction. 

3) Local and non-local operation of graphene-based spin valves.  Device model 
equations were developed and applied to structures that have been examined 
experimentally by other groups.  The model results clearly indicate under which 
conditions significant enhancements of the magneto-resistance can be expected if 
the non-local operation is adopted. 

The knowledge gained has been presented to the research community in great detail 
through one conference proceedings paper and three archival journal papers: 
 
“Electron spin flip scattering in graphene due to substrate impurities”, A. Goswami, Y. 
Liu, F. Liu, P.P. Ruden and D.L. Smith (2013), MRS Proceedings, 1505, mrsf12-1505-
w10-12 doi:10.1557/opl.2013.246. 
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“Rashba-induced spin scattering at graphene edges”, F. Liu,.Y. Liu, J. Hu, D.L. Smith, 
and P.P. Ruden, J. Appl. Phys. 114, 093708 (2013). http://dx.doi.org/10.1063/1.4820463 
 
“Scattering in graphene associated with charged out-of-plane impurities”, Y. Liu, A. 
Goswami, F. Liu, D.L. Smith, and P.P. Ruden, J. Appl. Phys. 116, 234301 (2014). Doi: 
10.1063/1.4904193. 
 
“Device model for graphene spin valves”, F. Liu, Y. Liu, D.L. Smith, and P.P. Ruden, 
IEEE Trans. El. Devices 62, 3426 (2015). http://dx.doi.org/10.1109/TED.2015.2464793. 
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